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Studies of three-dimensional Stokes flow of two Newtonian fluids that converge in a 
T-type bifurcation have important applications in polymer coextrusion, blood flow 
through the venous microcirculation, and other problems of science and technology. 
This flow problem is simulated numerically by means of the finite element method, and 
the solution demonstrates that the viscosity ratio between the two fluids critically 
affects flow behaviour. For the parameters investigated, we find that as the viscosity 
ratio between the side branch and the main branch increases, the interface between the 
merging fluids bulges away from the side branch. The viscosity ratio also affects the 
velocity distribution : at the outlet branch, the largest radial gradients of axial velocity 
appear in the less-viscous fluid. The distribution of wall shear stress is non- 
axisymmetric in the outlet branch and may be discontinuous at the interface between 
the fluids. 

1. Introduction 
Theoretical and experimental study of two immiscible fluids converging in three- 

dimensional bifurcations is relevant to a wide variety of disciplines, ranging from 
polymer coextrusion and reservoir engineering to biofluid mechanics. The problem of 
blood flow in venules is the primary motivation for the present study. Blood acts to 
transport oxygen and nutrients to tissues and remove waste products from tissues. 
Within living tissues, blood is transported via a microvascular network of arterioles, 
capillaries, and venules. Most of the resistance to blood flow occurs at the 
microvascular level. A significant part, typically 15-20 %, of the total microvascular 
resistance occurs in the venules. Venular resistance is known to vary in concert with 
arteriolar resistance and inversely with blood flow. Changes in venular resistance with 
flow are crucial for maintaining capillary blood pressure within a certain range and, 
therefore, for maintaining fluid balance. Some of the resistance changes are attributed 
to rheological effects of red blood cell aggregation, but the investigation of this and 
other mechanisms is still in progress (e.g. Marshall 1991). 

In addition to its role in venular resistance changes, the pattern of blood flow in 
venular networks is important for understanding the distribution of platelets, which 
are essential for blood clotting (Tangelder et al. 1985; Sato & Ohshima 1989; Oude 
Egbrink et al. 1991), and white blood cells, which are particularly important during 
inflammation (House & Lipowsky 1988). The microvascular network can be modelled, 
to a first approximation, as vascular segments of circular cross-section linked in binary 
fashion to form bifurcations. Understanding blood flow regulation and transport 
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phenomena in the microcirculation requires quantitative knowledge of flow in 
individual microvascular bifurcations. 

To date, most experimental and theoretical studies of blood flow in microvascular 
bifurcations have concentrated on diverging arteriolar bifurcations in order to 
understand and quantify phase separation between plasma and red cells (Schmid- 
Schonbein et al. 1980; Pries et al. 1989, 1990; Yan, Acrivos & Weinbaum 1991 ; Enden 
& Popel 1992, 1994). In arterioles, hydrodynamic interactions of red cells with the walls 
result in a marginal cell-free layer of plasma and a core of concentrated suspension of 
red cells (Schmid-Schonbein et al. 1980; Pries et al. 1989; Yamaguchi, Yamakawa & 
Niimi 1992). The non-uniform distribution of red cells at the inlet cross-section of the 
main branch leads to non-uniform distribution of these cells into the branches of the 
arteriolar bifurcation. Owing to the small diameters and velocities involved, the 
Reynolds number, Re, is smaller than unity and, therefore, theoretical models pertinent 
to flow problems in the microcirculation use the Stokes flow approximation. 

Owing to phase separation in arteriolar networks, the volumetric concentration of 
red cells in the blood, called the haematocrit, is distributed unevenly within capillary 
networks. As a result of this heterogeneity, branches of converging venular bifurcations 
may carry blood of different haematocrit into the collecting vessel. When two streams 
of venular blood with different haematocrits converge, the streams tend to retain their 
original haematocrit without significant mixing until the next bifurcation is reached, 
because the diffusion of red cells across the interface between the streams is extremely 
slow (Schmid-Schonbein & Zweifach 1975; Carr 1989). Since blood viscosity is known 
to increase with haematocrit and red cell aggregation (Lipowsky, Usami & Chien 
1980), the converging streams of blood may have different viscosities. As a first 
approximation, the two streams of blood entering from the two branches are modelled 
here as immiscible Newtonian fluids with different viscosities. 

The aim of this work is to provide a quantitative solution to the problem of steady 
two-component Stokes flow in a three-dimensional converging bifurcation. The 
viscosity ratio, p*, between the inlet streams is varied between 0.125 and 8 to evaluate 
its effect on the fluid mechanics of the problem. The chosen values for ,u* also reflect 
the realistic range of viscosities at a venular bifurcation; this ratio may reach even 
lower or higher values, depending upon haematocrits and degrees of red cell 
aggregation in the merging streams. The calculations are performed for a single value 
of side-to-main-branch radius ratio R* = 0.4, and for a range of side-to-outlet-branch 
flow ratios, Q* = 0.1-0.9. 

To our knowledge, the problem of two fluids with different viscosities converging in 
a three-dimensional bifurcation has not been studied theoretically or experimentally, 
and this is the first attempt at a solution without knowing a priori the shape of the 
interface separating the fluids. The solution presented is only a first approximation to 
flow in venular bifurcations, since blood exhibits non-Newtonian shear-dependent 
viscosity, resulting mainly from formation of red cell aggregates. In future studies, 
converging flows of non-Newtonian fluids with non-uniform distribution of hae- 
matocrit at the inlet branches will be considered. Owing to the particulate nature of 
blood, the results should be interpreted with caution when applied to very small 
venules where red blood cell size becomes comparable to vessel diameter. The results 
may also be applicable to converging streams in arteriolar bifurcations of arcade 
networks. 
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2. Mathematical model and method of solution 
2.1. Assumptions and simplijkations 

The flow problem to be modelled involves two homogeneous Newtonian fluids with 
different viscosities that converge at a three-dimensional T-type bifurcation of rigid 
circular cylinders. Steady flow is assumed, and the two fluids are modelled as 
immiscible. Surface tension and inertia are neglected. The main branch is aligned with 
the y-axis and the side branch runs along the z-axis, forming a 90" bifurcation as shown 
in figure 1. The walls of both branches intersect at a sharp edge. We choose not to 
smooth out the edge to avoid introducing additional geometrical parameters into the 
problem. 

2.2. Variables and parameters 
Denote the volumetric flow rate Qi, radius Ri, and viscosity pi, at the inlet of the main 
branch, i = 1, and side branch, i = 2. Flow is non-dimensionalized with respect to 
Qout = Q1+Q2, lengths with respect to R,, and viscosities with respect to pl. The 
following quantities are defined : 

Q* = Q,/Qout, R" = Rz/Ri, P* = Pz//ccI 

Dimensionless velocity, u, is expressed in terms of its Cartesian components (u, u, w), 
and non-dimensionalized with respect to 2Dout, where Dout = Q,,,/(nR;) is the 
dimensional mean velocity at the outlet. Pressure, p ,  is non-dimensionalized with 
respect to 2pu, Dout/Rl. Unless specified otherwise, all parameters and variables 
hereinafter appear in dimensionless form. 

2.3. Geometrical and flow parameters 
The following geometrical parameters are chosen: total length of the main branch 
equals 8 ; length of the side branch, measured from the centre of the side branch inlet 
to the midpoint of the main branch axis, equals 4, and side-to-main branch radius 
ratio, R", equals 0.4. Numerical calculations have shown that lengthening the branches 
further does not affect the flow regime within the computational domain. In this study, 
flow ratios are Q* = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9; viscosity ratios are 
p* = 0.125, 0.25, 1, 4, 8. 

2.4. Numerical procedure 
The non-dimensional Stokes equations become 

- V p ,  + V Z U ,  = 0, - v p ,  -t p"V2u2 = 0 (1) 

for fluids 1 and 2, respectively. 
At both inlets of the bifurcation, parabolic velocity profiles are imposed, and the no- 

slip boundary condition is specified at the walls. Velocity and tangential stress are 
continuous at the interface between the fluids. At the outlet cross-section the stress-free 
boundary condition is specified, i.e. the normal component of stress is set to zero. This 
latter boundary condition does not necessarily imply that flow in the outlet branch is fully 
developed. Indeed, a number of experimental and theoretical studies indicate that two- 
component stratified flow in a circular tube may gradually evolve to a concentric 
axisymmetric arrangement in which the more-viscous fluid forms a core, and the less- 
viscous fluid occupies the peripheral annular layer (Everage 1973 ; MacLean 1973 ; 
White & Lee 1975; Williams 1975). However, evidence exists that such a transition 
region is very long and may extend over tens or hundreds of tube diameters. The stress- 
free boundary condition at the outlet separates the bifurcation region, where the 
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FIGURE 1 .  The finite element mesh consisting of 3474 27-node isoparametric bricks and the 
coordinate system with origin at the centre of the main branch axis. 

interface undergoes rapid changes, from the long straight tube, where interface 
evolution is slower. The problem of the slower interface evolution to its fully developed 
shape is beyond the scope of the present study. 

To impose the condition of fluid immiscibility, viscosity is modelled as a function of 
a parameter C, referred to as concentration, which is assumed to be conserved within 
fluid particles. Hence, for steady flow the material derivative DC/Dt vanishes such that 

( u - V )  c = 0. (2) 
Solving (1) and (2) with boundary conditions C = C,  at the main branch inlet and 
C = C ,  at the side branch inlet is, therefore, equivalent to the condition of immiscibility. 
For a concentration-dependent viscosity, p(C), equations (1) are equivalent to 

= 0, j , k  = 1,2,3 

in Cartesian tensor notation. Viscosity is chosen as 

1 for C <  C 
for C >  C 

(3) 

(4) 

where C = :(C, + C,) is the average concentration. 
This approach can be generalized to treat converging flow of two suspensions with 

different concentrations of suspended particles when the particles diffuse with a 
diffusion coefficient D,. In this case, (2) should be modified by adding a diffusion term 
VD,  V C  to the right-hand side. The problem may then be solved by using the numerical 
approach of the present study. 

With use of the finite element program FIDAP (Fluid Dynamics International, 
Evanston, IL), the geometrical domain is discretized into brick elements, and the 
discrete version of (2) and (3) is solved for the global vector of unknowns 
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V = (u,p,  C) via the Galerkin method. Velocity components are calculated at the 
element nodes, whereas pressure is calculated at the centre of the elements. 

This procedure yields a large system of nonlinear algebraic equations. A segregated 
algorithm is used to decompose the system into a set of decoupled sub-matrix systems. 
Pressure is used to satisfy the continuity equation. The pressure-projection version of 
the segregated algorithm is employed to obtain an explicit matrix equation for 
pressure. A conjugate-gradient-based method is used to solve the decoupled systems 
iteratively. Convergence is achieved when the relative error for each variable is less 
than 0.001. 

2.5. Computational strategy 
Initial computations were performed on a CRAY Y-MP supercomputer, and the final 
numerical solution was obtained using a Silicon Graphics POWER Series 4D380VGX 
computer equipped with 96 megabytes of random-access memory. 

We checked the accuracy of the proposed technique by simulating the developing 
flow of two fluids in an axisymmetric core-annulus configuration through a straight 
tube. The nodal arrangement and density in this problem are similar to that of the 
bifurcation problem. By specifying inlet interface position, fluid viscosity, and inlet 
parabolic velocity profile, the fully developed downstream interface position may be 
calculated analytically. Computational results for a variety of viscosity ratios of 
interest in this study show less than 1 error. Additionally, numerically calculated 
total fluid flux at the outlet shows less than 1 % deviation from the imposed flux at the 
inlet. 

For the bifurcation problem, the computational domain is discretized as illustrated 
in figure 1. The problem is solved in a series of computational stages. First, a low- 
density mesh consisting of 15 632 8-node isoparametric brick elements (17 805 nodes) 
is used. Equation (3) is solved with the assumption of equal viscosity, i.e. p* = 1. This 
first stage provides an initial guess for velocity and pressure to be used in further 
calculations. Second, the convection-diffusion problem governed by (2) is solved by 
using the same low-density mesh to obtain an initial guess for concentration. Third, 
these initial guesses are used in solving (2) and (3) simultaneously on a higher-density 
mesh consisting of 68 896 8-node isoparametric brick elements (74585 nodes). This 
solution provides an initial guess for solving (2) and (3) with a different low- 
density mesh consisting of 3474 27-node isoparametric brick elements (3 101 3 nodes). 
Numerical experiments show that calculations involving 8-node elements require much 
less computational time and resources than those involving 27-node elements, but they 
are less accurate. The 27-node element mesh enables the acquisition of a more accurate 
solution with less than half the nodes of the high-density 8-node element mesh. 
Relaxation factors for velocity, pressure, and concentration, as well as an upwinding 
factor for the concentration, are selected empirically. 

Even though (2) does not contain a diffusion term, ‘numerical diffusion’ is present 
in a narrow transition region where concentration varies between C, and C,. The 
interface between the fluids is identified by tracing the contour C = C. This procedure 
provides a numerically stable interface, i.e. the interface is insensitive to small 
variations of the computational mesh. The method of identifying interface shape has 
been compared to a different method (Enden & Pope1 1992), where massless ‘marker’ 
particles initially located near the walls of the branches are traced along their respective 
trajectories until they intersect the outlet cross-section. Trajectories, or streamlines, 
originating at the inlet of the main branch practically merge with those arriving from 
the side branch, thereby outlining the interface. 

Figures 2(a) and 2(b) illustrate how streamlines trace the fluid interface. Figure 2(a) 
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FIGURE 2. Streamlines originating near the walls: (a) at the inlet cross-section of the main branch, 
(b) at the inlet cross-section of the side branch. Heavy arrows indicate flow direction. R* = 0.4; 
Q* = 0.4; ,u* = 0.25. Note that an approximation of the interface is traced out at the outlet 
cross-section. 

shows 40 streamlines originating at 0.95R, radially and evenly spaced at the main- 
branch inlet. Upstream of the bifurcation in the main branch all streamlines remain 
straight, reflecting fully developed Poiseuille flow. Directly at the bifurcation, however, 
streamlines originating closest to the top of the main branch bend sharply, while those 
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FIGURE 3. Superposition of streamlines originating near the wall at the inlet of the main branch (solid 
symbols) and of the side branch (open symbols) and the average-concentration contour (solid line) 
at the outlet cross-section. To the right of the arrow the streamlines diverge and d o  not follow the 
interface. R* = 0.4; Q* = 0.8; / i *  = 4. 

originating near the main branch sides remain relatively straight. At the bifurcation, 
inlet flow from the side branch causes downward bending of all main branch 
streamlines. Similarly, figure 2(b)  shows 15 streamlines originating at 0.95R2 radially 
and evenly spaced at the side-branch inlet. Again, the streamlines remain straight until 
the bifurcation is encountered, at which point the streamlines initially bend toward the 
main-branch inlet and eventually head toward the main-branch outlet. 

Of primary importance is determining how the interface intersects the outlet cross- 
section. The shape of this curve provides information about the cross-sectional area 
occupied by fluid originating from a particular branch. Fluid above the interface 
originates from the side branch, whereas fluid below the interface originates from the 
main branch. Figure 3 shows excellent agreement between the trajectories method and 
the concentration method up to the point marked by the arrow. The particle trajectory 
method is inaccurate for particles containing radial velocity components close to the 
walls. The slightest radial component near the wall will send that particle to the wall; 
this phenomenon is readily seen at high flow ratio, Q*. Although both techniques are 
sufficiently accurate up to a certain distance from the wall, the concentration method 
has the advantage of approximating the interface up to the wall. Thus, the 
concentration method is used consistently in the present study. 
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3. Results and discussion 
We now describe the relevant characteristics of the solution to the flow problem: tht 

shape of the interface between the fluids, the velocity and pressure distributions, and 
the distribution of wall shear stress. 

3.1, Fluid interface geometry 
The flow ratio and viscosity ratio are important parameters which affect the shape of 
the interface between the two fluids. Figure 4(a) demonstrates the effect that varying 
the flow ratio has on interface shape at the outlet cross-section when the viscosity ratio, 
p*, is 0.25: for this viscosity ratio, the outlet velocity profiles are non-parabolic. As 
flow from the side branch increases, the interface bulges away from the side branch. 
Overall interface shape is similar for each Q* investigated: low slope near the symmetry 
plane and continuously steeper slope approaching the wall. A similar feature was 
found in a previous study (Enden & Popel 1992) for ,u* = 1 and R* < 1. However, in 
that study it was found that for R* = 1 and small values of Q*, the interfaces bulge 
slightly toward the side branch. Interestingly, for a given p* the interfaces do not 
appear to intersect as Q* is varied. 

In addition to changes in the flow ratio, the interface shape is strongly influenced by 
the viscosity ratio, as shown in figure 4(b). As p* increases for a given Q*, the interface 
bulges further away from the side branch, the intersection of the interface with the 
walls shifts toward the side branch, and the slope of the interface near the wall 
increases. As figure 4 (b)  indicates, the lower-viscosity fluid tends to envelop the higher- 
viscosity fluid, thereby reducing the wall surface in contact with the higher-viscosity 
fluid. In $3.5 it will be shown that this may lead to a decrease in flow resistance in the 
outlet branch. 

3.2. Velocity distribution 
The velocity and pressure distributions throughout the bifurcation are also strongly 
affected by the viscosity ratio. The effect of the viscosity ratio on the velocity field in 
the bifurcation region is evident in the symmetry plane shown in figure 5. Vectors 
indicating velocity magnitude and direction are plotted at each nodal point in the 
symmetry plane. A solid line representing the interface originates at the stagnation 
point (located at the top of the main branch immediately upstream of the bifurcation) 
and extends to the outlet. When the flow is presented from this perspective, major 
differences in downstream velocity profile are observed for different viscosity ratios. 
For all cases, parabolic velocity profiles are maintained upstream of the bifurcation in 
both the main and side branches, but at the bifurcation the velocity field adjusts in 
accordance with viscosity differences. Figure 5 shows that maximum velocity at the 
outlet branch is reached in the fluid with lower viscosity. The existence of a stagnation 
point in a similar flow of a homogeneous viscous fluid was pointed out in an earlier 
numerical study by Tutty (1988). He studied flow from semi-infinite space into a small 
side branch and discovered a stagnation point downstream from the branch. Since 
Stokes flow is reversible, his solution is similar to the present analysis for p* = 1, but 
for two converging streams the stagnation point would be upstream from the 
bifurcation, in agreement with the present results. 

The outlet velocity distribution is highly dependent on viscosity ratio, as 
demonstrated by figure 6. To display these distributions, we interpolate the velocity 
profiles onto a regular grid. The solid arc in the (x, 2)-plane represents the wall of the 
outlet, while the heavy line on the surface is the fluid interface. For p* = 1 (figure 6b) 
the velocity profile is parabolic; however, p* =k 1 (figure 6a,  c) is characterized by 
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FIGURE 4. The interface at the outlet cross-section for (a) Q* = 0.2, 0.4, 0.6, 0.8; p* = 0.25; 
(b) ,u,* = 0.125, 0.25, 1, 4, 8; Q* = 0.4. R* = 0.4. 

asymmetric velocity profiles in which radial velocity gradients are higher in the less- 
viscous fluid. The accuracy of the results is checked by comparing the flow ratio 
imposed by the boundary conditions with the flow ratio calculated by integration at the 
outlet. The relative difference between the computed and the specified flow ratios is less 
than 1 %. 

3.3. Pressure distribution 
Fully developed Poiseuille flow exists upstream from the bifurcation in the main 
branch. In dimensional variables, volumetric flow rate, Ql, can be expressed in terms 
of pressure gradient, aP/i3Y, in the form of Poiseuille's law as 

Expressing aP/a Y from (5) ,  we obtain after non-dimenionalization 

-($) =4(1-Q*). 

Therefore, the dimensionless upstream pressure gradient in the main branch is only a 
function of flow ratio. Figure 7(a)  shows the numerical results of the pressure 
distribution along the y-axis for viscosity ratios 0.125, 0.25, 1, 4, and 8. In this figure 
the flow ratio Q* = 0.4, so (6) gives a normalized pressure gradient of 2.4. All slopes 
between y = -4 and - 1 in figure 7(a)  agree with this value to within 1 94. Actual 
pressure values within this range are monotonically increasing with viscosity ratio. 
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X Ly 

FIGURE 5. Superposition of velocity field and interface at the (y,z)-symmetry plane: 
(a) ,u* = 0.125, (b) 1, (c) 8. R* = 0.4; Q* = 0.4. 



Converging three-dimensional Stokes f low 61 

FIGURE 6.  Three-dimensional velocity profiles at the outlet cross-section: (a) p* = 0.125, (b) 1, 
(c) 8. The interface is marked by a thick line. R* = 0.4; Q* = 0.4. 

Note that the stress-free boundary condition imposed at the outlet branch yields 
practically zero pressure at the outlet cross-section, since the axial derivative of velocity 
at the outlet is negligible. 

At the bifurcation, the pressure gradient changes smoothly within a transition region 
- 1 < y < 1. Some flattening of the slope is present around y = -0.4 for p* > 1. For 
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FIGURE 7. Normalized pressure distribution for R* = 0.4, Q* = 0.4, and different values of ,u* : 
(a) along the main-branch axis; (b) along the side-branch axis. 

the region 1 < y < 4 the pressure distribution along the axis becomes linear again but 
with a different slope. The slopes of these profiles are not described by Poiseuille 
relationships, since flow in the outlet branch is stratified (this issue is discussed in $3.5). 
A similar analysis can be made for the side branch. The volumetric flow rate in the side 
branch is 
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and the non-dimensional pressure gradient becomes 

In figure 7(b )  the numerical results for z > 1 agree with analytical results that 
correspond to Poiseuille flow to within 1 %. Pressure values remain approximately 
constant between z = - 1 and 0.2, yielding zero slope for all viscosity ratios. In the 
range 0.2 < z < 1, the slopes change smoothly with no discontinuity. 

The accuracy of the above results is not affected by the singularity of pressure at the 
intersection edge. Indeed, Dagan, Weinbaum & Pfeffer (1982) and Tutty (1988) show 
analytically that, for flow of a homogeneous fluid into a pore, pressure becomes 
singular at the sharp edge. However, this singularity is local, and its effect decays 
rapidly beyond the edge. 

3.4. Wall shear stress distribution 
The numerical solutions show that the viscosity ratio has a significant effect on the wall 
shear stress distribution. Plotted in figure 8 is the magnitude of the non-dimensional 
wall shear stress (tangential component of the total stress at the wall), 1 ~ ~ 1 ,  versus y for 
Q* = 0.4. Wall shear stress is non-dimensionalized by 2p, Uout/Rl. In the inlet 
branches, sufficiently far from the bifurcation, the wall shear stress values are 

71 = 2(1 -Q*), 72  = ~,PQ*/(R*)~. (9) 
The numerical results differ from (9) by less than 1 %. Wall shear stress distributions 

for the main branch are shown along three lines parallel to the y-axis : 8 = - 90", 0", 
and 90" (figure 8 a). At 8 = 90°, which is the line along the top of the main branch,  IT^,^ 
is singular at the upstream and downstream corners of the side branch. No wall exists 
in the range -0.4 <: y < 0.4; thus, wall shear stress is not displayed for this interval. 
There is a stagnation point upstream from the bifurcation, as seen in figure 5 .  A 
common feature at 8 = 90" is an increase of 17,l from 1.2 to a maximum and then a 
decrease to zero at the stagnation point. The magnitude of this local maxima increases 
with ,u* (figure 8). Immediately downstream from the stagnation point, 1 ~ ~ 1  increases 
sharply, as indicated by the steep slope in the figure. This segment is a reflection of the 
7, curve with respect to the horizontal axis at the stagnation point. In fact, at the plane 
of symmetry, the only non-zero component of stress, 7yz, changes sign at the stagnation 
point and decreases sharply toward the edge of the side branch. Similar behaviour of 
wall shear stress was demonstrated earlier in the problem of a single fluid drawn into 
a pore, where the magnitude of 7, approaches infinity as the distance to the edge 
decreases (Tutty 1988). Distinct differences in IT,( downstream at 0 = 90" are apparent 
between the higher and lower viscosity ratios. For ,u* < 1, IT,( decreases smoothly from 
infinity at y = 0.4 to a constant value at the outlet. In addition, 1 ~ ~ 1  at the outlet is 
smaller than its inlet value of 1.2. For ,u* 1, however, )7,1 is non-monotonic: initially 
it decreases and subsequently increases to a constant value greater than 1.2. 

In contrast to the case 8 = 90", along the lines 8 = -90" and 0" the magnitude of 
wall shear stress 17,l is represented by a smooth curve, since these lines remain in the 
same fluid and no singularities are encountered along them. For ,u* = 1 these two 
curves are nearly identical except near the bifurcation; the curves eventually merge to 
a constant value at the outlet, well within 1 % of the exact value of 2, as shown in figure 
8 (c). At the outlet cross-section, 7, is a function of 8 when ,u* =+ 1, as demonstrated in 
figure 8(a, b, d, e). Higher values of 7, correspond to the more-viscous fluid. It is 
shown in the Appendix that if the interface intersects the wall in fully developed flow, 

3-2 
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FIGURE 8. (a-e). For caption see facing page. 
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the intersection angle should be either 0" or 90", in the latter case 7, is discontinuous 
and the ratio of the wall shear stress at the interface should equal the viscosity ratio, 

We now attempt to analyse the behaviour of 7, near the interface. To increase 
numerical resolution close to the interface, an extremely dense mesh of the bifurcation 
consisting of 16896 27-node brick elements (127491 nodes) is utilized. Numerical 
results suggest discontinuous 7,, as shown in figure 9 for Q* = 0.4, and p* = 0.25 and 
4. These results illustrate the dependence of 7, on 13 at the outlet cross-section. The 
curve segment on the left represents the variation of 7, along the wall in the fluid 
originating from the main branch, whereas the curve segment on the right represents 
7, in the fluid originating from the side branch, both calculated at the outlet cross- 
section. In both figures 9(a)  and 9(b) the fluid with higher viscosity is responsible for 
the highest values of 7, at the outlet cross-section. Extrapolation of the 7, curve 
segments to the location where the interface contacts the wall suggests that at the 
interface 7,2/7,1 +p*. 

Calculations of shear stress involve differentiation of the solution for velocity, and, 
therefore, accuracy near points of discontinuity is limited. Higher resolution of the 
curve segments shown in figure 9 in the neighbourhood of the interface would require 
a significantly denser mesh and additional computational efforts which have not been 
pursued. As for the angle of intersection between the interface and the wall, the 
computed interface does not appear to be normal to the wall (see figure 4b), contrary 
to the findings in the Appendix. This may be because the numerical solution of our 
calculations is of limited resolution very close to the wall, or because flow is not yet 
fully developed (discussed further in 0 3.6). 

P*. 

3.5. Apparent viscosity of stratiJiedJEow at the outlet 
At the outlet, the flow is either changing very slowly or becomes fully developed and 
remains stratified. The relationship between volumetric flow rate, Qout, and pressure 
gradient, (aP/aY),,,, can be expressed in terms of apparent viscosity, p a p p ,  

Qout = l( nR4 -") 
' P a p ,  ay out' 

or in dimensionless form as 

The outlet pressure gradient in (1 1) is determined numerically from the slope of axial 
pressure profiles in the main branch, shown in figure 7(a) .  It is useful to compare papP 
with an effective flow-weighted viscosity, pef f ,  

PI Qi + ~ z  Q, 
Qout 

Peff = 

In dimensionless form (1 2) is recast as 

FIGURE 8. The magnitude of wall shear stress, plotted along the 8 = 90°, 0", and -90" lines, parallel 
to the y-axis: -, 90"; , 0"; . . . . ., -90". Inset in (a)  illustrates the definition of 8. 
(a )  p* = 0.125, (b) 0.25, ( c )  I ,  ( d )  4, (e)  8. R* = 0.4 and Q* = 0.4. For the 90" line, actual data points, 
represented by small filled circles, are connected with straight line segments. Small arrows above and 
below the graphs indicate the location of the side-branch walls. 
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FIGURE 9. Wall shear stress plotted along the circumference at the outlet cross-section for (a) 
p* = 0.25, (b) 4. R* = 0.4 and Q* = 0.4. The unit of the abscissa (degree) corresponds to that of 
figure 9a (inset). 

In figure 10 the ratio ,uapp/,ueff is plotted versus flow ratio, Q*, for viscosity ratios 
0.125, 0.25, 4, and 8. Calculations are done in the range of flow ratio Q* = 0.1-0.9. 
Surprisingly, the shapes of these curves are very similar to those of the corresponding 
upper and lower bounds calculated from the core-annulus configuration for a given Q* 
and ,u*, which are denoted by thin solid lines. To find the upper and lower limits for 
,u,pp/+ff consider the concentric fully developed flow of two fluids of different 
viscosities in a straight circular tube, such that: (i) the fluid with higher viscosity 
envelops that with the lower viscosity, and (ii) the fluid with lower viscosity envelops 
that with the higher viscosity. The representation of these curves can be calculated 
analytically as follows. Denote by ,uc and ,up the viscosity of fluid in the core and at the 
periphery, respectively, and by Qc and Qp the flow of the fluid in the core and in the 
periphery, respectively. Denote 

The solution yields 

,uapp/,ueff = h/[h + 2(1- $6) (4 + A;) (1 -A) (1 + 
For ,u* > 1, the upper bound corresponds to h = ,u*, 4 = Q*, and the lower bound to 
h = ]/,,xu*, 4 = 1 -Q*. For ,u* < 1, the upper bound corresponds to 

h = I/p*, 4 = 1-Q*, 

and the lower bound to h = ,u*, 4 = Q*. 
The general shape of the heavy solid curves in figures IO(a) and 10(b) is similar, as 

is the shape of the curves in figures 1O(c) and 10(d). When ,u* = 1, the ratio ,uupp/,ueff 
equals 1 (dotted line in figure 10). Notice that ,uaPp/,ueff can be larger or smaller than 
unity depending on values of Q* and ,u*, i.e. the resistance of the stratified flow can be 
larger or smaller than the flow resistance of a homogeneous fluid with viscosity pefT It 
is evident that in the limits Q* + 0 and Q* --f 1 only a single fluid would remain present 
in the outlet branch; thus, at Q* -f 0 and Q* + 1, viscosity ratio ,uapp/peff + 1 for any 
value of ,u*. This means that the curves shown in figure 11, if extended to the entire 
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FIGURE 10. The ratio of apparent viscosity to effective viscosity, ,uapp/,ueff, plotted as a function of Q* 
for (a) ,u* = 0.125, (b) 0.25, (c) 4, (d) 8. R* = 0.4. Calculated data points are shown as triangles or 
diamonds. Upper and lower bounds are indicated by a thin solid line. 

range 0 < Q* < 1, would be non-monotonic as a function of Q* and would have a 
minimum and a maximum. Equations (10) and (12) together with the results presented 
in figure 11 provide the relationship between volumetric flow rate and pressure gradient 
for these stratified flows. Alternatively, the hydrodynamic resistance per unit length is 
8papP/(7cR3. These may be considered as a generalization of Poiseuille's law for the 
above stratified flows. 

In a number of cases, the behaviour of these curves can be qualitatively understood 
from the shape of the interfaces for different p*, as shown in figure 4(b) .  For p* > 1, 
the more-viscous fluid enters the side branch and is enveloped by the less-viscous fluid 
from the main branch; the larger the value of ,u*, the smaller the wetting perimeter of 
the more-viscous fluid. This explains why most of the curve ,uapp/,ueff for p* = 4 is 
below the value of unity. For ,u* < 1 the reverse is not necessarily true since the 
interfaces remain concave, though to a lesser degree. Indeed, for p* = 0.25 
approximately half of the curve ,uaPp/peff is above 1, whereas the other half is 
below 1. 
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3.6. Possible evolution of the interface shape if the outlet is long 
A great many experimental and theoretical studies have been devoted to evaluation of 
the shape of the interface in two-component flow in a straight tube (Everage 1973; 
Southern & Ballman 1973; MacLean 1973; Joseph, Renardy & Renardy 1984; Joseph 
1990). This problem is important in various technological applications, e.g. in oil flow 
through a pipeline with addition of a low-viscosity fluid to reduce the resistance to flow, 
or in stratified flow of two polymer melts through a tube in the process of spinning two- 
component fibres. 

It has been shown experimentally that the less-viscous fluid tends to encapsulate the 
fluid with the higher viscosity, which tends to migrate into regions of lower shear rate 
(Joseph 1990). This relatively slow phenomenon conforms to the viscous-dissipation 
principle, which postulates that for a given flow, the amount of viscous dissipation is 
minimized. According to the variational method and the minimum viscous dissipation 
principle, the more-viscous fluid tends to concentrate at a circular core concentric with 
the tube, while the less-viscous fluid flows in an annular region between the core and 
the tube walls (Everage 1973; McLean 1973). 

Theoretical three-dimensional analysis of the flow evolution of two immiscible fluids 
in a straight pipe is still unavailable. In fact, the problem of evolution of flow has been 
recently described by Joseph (1990) as follows: ‘This difficult study is at best 
computationally intensive and at worst either too expensive or even beyond the 
capabilities of modern supercomputers ’. Two-dimensional simulation of two- 
component flow in a channel which uses the lattice-gas automata technique showed 
that the fluid must traverse a length of 5&100 times the channel width before most of 
the more-viscous fluid forms a central core (Stockman, Stockman & Carrigan 1990). 
Another question about the two-component flow in a straight pipe is that if, indeed, 
an encapsulation occurs, what are the flow conditions for which the concentric 
core-annulus configuration is stable? This question has been addressed in studies using 
linear and nonlinear stability analyses (Joseph et al. 1984b; Joseph, Nguyen & Beavers 
1984a; Chen & Joseph 1991). Useful results were obtained from the linearized stability 
theory where the stability criterion yielded an upper limit for the interface radius. For 
example, for a Reynolds number of 100 the linear stability analysis implied that the 
diameter ratio between the interface and the tube wall should be larger than 0.7 (Joseph 
et al. 19843). 

It is possible that in our numerical solution the velocity profile and, hence, the shape 
of the interface in the outlet branch are not fully developed. However, the rate at which 
the shape changes with distance may be negligible in comparison with the changes 
within the bifurcation region. It is also possible that the experimentally observed 
concentric stratification is inertial in nature; in other words it evolves at non-zero 
Reynolds numbers. In terms of applications to flow in venular bifurcations, the length 
of the outlet channel is sufficiently short, typically on the order of 10 diameters, and 
the flow is likely to remain stratified until the next bifurcation is encountered. In such 
a system, a very complex mixing pattern might result when flow passes through 
successive converging bifurcations. 

4. Concluding remarks 
In the present study, emphasis was placed on the effect of viscosity ratio, p*, while 

branch radius ratio was kept constant, R* = 0.4, and flow ratio was varied, 
Q* = 0.1-0.9. It is possible that for different values of parameters the qualitative 
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features of the flow are different from the ones described herein. It is known from 
previous calculations (Enden & Pope1 1992) with ,u* = 1 that for R* = 1 the interface 
between the fluids originating from different branches may become nearly flat, in 
contrast to the shapes found in the present study. Additional studies are necessary to 
analyse this problem fully. As for applications to the venous microcirculation, this 
study provides the first theoretical results on blood flow in venular bifurcations. The 
three-dimensional flow velocity and shear stress distribution obtained will help in 
interpretation of experimental data on platelet and white blood cell distribution in the 
venular microcirculation. The study also provides an analogue of the Poiseuille law for 
stratified flow in a circular vessel. The calculated flow resistance (apparent viscosity) 
could differ by as much as 50% from the flow resistance of the corresponding 
homogeneous fluid. The resistance may be calculated as a function of flow ratio, 
viscosity ratio, and diameter ratio. In view of these results, conventional treatment of 
venular resistance using the Poiseuille law needs to be reassessed. Several important 
factors will have to be considered in the future. Among these are the non-Newtonian 
(shear-thinning and thixotropic) behaviour of blood resulting primarily from formation 
of red cell aggregates and the non-uniform distribution of haematocrit - particularly, 
the formation of cell-depleted layers of plasma near the walls. It should be pointed out 
that owing to the particulate nature of blood, the results presented here should be 
interpreted with caution when applied to very small vessels whose diameter is 
comparable to red blood cell size. 
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to thank Dr A. Yakhot for useful comments, particularly regarding the derivation 
included in the Appendix. 

Appendix 
Consider two-component fully developed flow in the vicinity of a circular arc with 

velocity w(x, y )  and an interface r as shown in figure 11. Let s be the local coordinate 
along the interface and n be the normal to the interface. The interface intersects the wall 
at an angle 90"-a. It will be shown that two cases are possible: (i) the interface is 
normal to the wall, a = 0", and the wall shear stress, T ~ ,  is discontinuous at the 
interface; (ii) the interface is tangential to the wall, a = 90", and the wall shear stress 
is continuous. 

If the z-velocity component, w, is differentiable in both flow domains and at the 
walls, then from figure 12: 

where subscript i = 1,2 denote fluids 1 and 2, respectively. Since w = 0 at the wall, 
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FIGURE 11. Schematic description of the interface intersecting the wall in a fully developed flow. 

Velocity w is continuous at the interface; thus, 

Combining (A 1) with (A 3 )  and (A 4) yields 

( 2 - % ) c o s a + 0  as s i o .  

Wall shear stresses in the fluids at the interface are expressed as 

On the other hand, tangential shear stress is continuous at the interface, hence, 

Combining (A 2) with (A 3) and (A 7) gives 

( p l ~ - , u 2 ~ ) s i n a + o  as s- to .  

Equations (A 5)  and (A 8) must be satisfied simultaneously. Two cases are possible: 
(i) a = 0", then (A 8) is satisfied, and from (A 5 )  it follows that 3w1/ay = aw,/ay, or, 
using (A 6), at the interface 

(ii) a = 90", then (A 5)  is satisfied,and from (A 8) it follows that p l  aw1/i3y = p, aw,/t$, 
or rW1 = rW2 at the interface. 

r,, = 1~*7,1; (A 9) 
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